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Towards an Understanding of Complex Biological Membranes
from Atomistic Molecular Dynamics Simulations
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Computer simulation has emerged as a powerful tool for studying the structural and func-
tional properties of complex biological membranes. In the last few years, the use of recently
developed simulation methodologics and current generation force fields has permitted novel
applications of molecular dynamics simulations, which have enhanced our understanding
of the different physical processes governing biomembrane structure and dynamics. This
review focuses on frontier arcas of research with important biomedical applications. We
have paid special attention to polyunsaturated lipids, membrane proteins and ion channels,
surfactant additives in membranes, and lipid—-DNA gene transfer complexcs.

KEY WORDS: Biomembranes; membrane proteins; lipid. DNA complexes; lipid—protein
interactions; gene therapy: polyunsaturated lipids; surfactants; nicotinic acetylcholine
receptor ion channel; peptide bundle: docosahexaenoic fatty acid; fluid lamellar phase.

INTRODUCTION

Biological membranes are sheetlike assemblies of amphipathic molecules that separ-
ate cells from their environment and form the boundaries of the different organelles
inside the cells [1]. These physical barriers, however, allow a controlled interplay
and exchange of material amongst the different parts of the cell and with the external
world. Membrane structure and function is accomplished by a complex composition.
Biomembranes are, thus, composed of a mixture of lipids, proteins, and carbo-
hydrates. Lipids, in particular, constitute their main component and structural basis.
The diversity existent in the lipid composition of cell membranes is a fundamental
ingredient. For instance, since cells are usually constrained to an environment where
temperature and pressure are fixed, membrane properties can be controlled by vary-
ing its composition (lipid type and cholesterol content, for example).

Lipid molecules are also interesting at the fundamental level. These amphiphilic
molecules in water display a rich variety of mesophases, which are controlled mainly
by temperature and lipid/water composition [1. 2]. Among these structures, the dis-
ordered fluid lamellar phase, L, is the most relevant in biology. Due to the com-
plexity inherent in the biologically relevant systems, theorcticians, computer
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simulators, and experimentalists have adopted simplified models to aid them to
understand the main properties of more complex membranes [1-3]. Pure lipid bi-
layers in the fluid lamellar phase represent the simplest of these biomembrane
models. ,

Computer simulations provide a unique tool to analyze membrane properties
from an atomic perspective and offer a direct connection between the microscopic
details of the system and the macroscopic properties of experimental interest [4, 5].
Recent developments in the field of computer simulations of model biomembranes
[5] have improved our understanding of the physical mechanisms governing their
structure and dynamics. In particular, classical molecular dynamics (MD) simulation
studies have been extensively used in the last decade to investigate pure lipid bilayer
models [6-14]. Due to the excellent agreement with experiment, computer simu-
lations are being used to probe more complex systems with potential biomedical
applications (see, for instance, Refs. [15-19] for recent reviews and references
therein). This complexity is achieved by introducing multiple components, such as
small amphipathic molecules or other solutes, membrane peptides or proteins, or
other biopolymers, into a simple model lipid bilayer. The level of detail available
from atomic based computer simulations offers unique possibilities not only for the
interpretation of experimental data but also to generate novel insights into crucial
issues in membrane biophysics.

In this article, we focus on important complex (multicomponent) membranes
from frontier areas of biomedical research. In particular, we consider subjects as
diverse as highly unsaturated lipids, membrane peptides and ion channels, surfactant
additives in membranes, and lipid—DNA gene transfer complexes. To illustrate each
of these topics, we present four examples, which constitute the most recent develop-
ments in the field. Specifically, we will discuss the effect of highly polyunsaturated
mixed-chain lipids on the membrane biophysical properties, the effect of surfactants
on biomembranes, transmembrane proteins functioning as ion channels and their
effect of the lipid environment, and the nature of lipid—-DNA interactions in the
lipid—DNA complexes that may be relevant in gene therapy.

METHODS: MD SIMULATIONS

Classical molecular dynamics simulations consist of the integration of the equa-
tions of motion for a many-body system of interacting particles [4, 5]. This method
can provide direct information on the structure and dynamics of complex biological
systems and a detailed picture of atomic and molecular motions subject to the limita-
tions of classical mechanics and knowledge of the intermolecular interaction poten-
tials (force fields). To handle the latter, effective pair potentials are commonly used,
where the many-body interactions are reduced to the computation of interactions
between pairs of molecules. Usually, they can be described as nonpolarizable pair-
wise additive interaction-site models. The parameters in the pairwise additive inter-
molecular models incoporate some of the nonpairwise additive effects of the
surrounding medium and depend to some extent on the thermodynamic state of the
system. AMBER [20], CHARMM [21], OPLS [22], and GROMACS [23] are
examples of the most commonly used and better tested empirical force-fields. The
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interaction sites in these models usually include all-atom descriptions, even though
most of them have variants where groups of atoms arc considered as single sites
(united-atom models). In particular, the molecular and potential model used for the
systems considered in this article was the recent version of the CHARMM all-atom
force field (CHARMM27) for the different components of the biomembranes: lipids
[24-26], nucleic acids [27], and proteins [28]. We used a rigid TIP3P model [29] for
the water molecules, which is consistent with the force field chosen for the rest of
the components. The intermolecular parts of the force fields are pairwise additive
functions, which consist of simple Lennard-Jones plus Coulomb terms, while the
intramolecular interactions consisted of bonded potentials (bond stretching, bond
bending, torsional motions) and nonbonded potentials (Lennard-Jones and electro-
static interactions for atoms separated by more than two bonds).

In these complex biological systems, which usually are constituted by an
increasingly large number of atoms (typically of the order of a few tens of thou-
sands), the evaluation of the long-range electrostatic forces is the most compu-
tationally expensive part of the calculation. Recent developments of novel
algorithms and the use of parallel machines, however, made these systems suitable
for MD simulation studies. In systems with periodic boundary conditions, the long-
range contributions are usually computed using the Ewald method. However, for
very large systems, such as the one considered here, the Ewald summation is too
slow and new algorithms with better scaling behavior have been developed and are
currently being used. The particle mesh Ewald method [30], which has been used in
the simulations reported in this article, and the fast multipole method (which scales
as O(N)) are just a few examples [3]. Further improvement in the speed of the calcu-
lations can be achieved by using the so-called RESPA (reversible reference system
propagator algorithm) algorithm, when multiple time scales are present in the
studied systems [31]. For instance, the use of reversible multiple time step algorithm
[31] with a three-stage force decomposition (into intramolecular, short-range, and
long-range intermolecular interactions) permits the use of considerably larger time
steps in lipid bilayer simulations. The short-range forces are usually computed using
a cutoff (of about 10 A) and methods like the minimum image convention [4, 5.

To further improve the efficiency of the calculations, the motions involving
hydrogen atoms of the different molecules are usually constrained to their equilib-
rium values. The SHAKE/ROLL and RATTLE/ROLL methods [32] have been
employed here to use a longer time step in the integration of the classical equations
of motion, when those fast degrees of freedom are not expected to be relevant for
the properties analyzed.

Since cells are usually constrained to an environment where the ambient con-
ditions are fixed, MD simulation are usually performed at constant temperature
and/or pressure with flexible simulation so the system is able to evolve from an
initial configuration to its equilibrium state. The precise control of temperature
needed in biological systems can be obtained by the use of the Nosé—Hoover chain
thermostat [33]. In this case, the MD simulations solve the extended equations of
motions, sampling the canonical (in a system with constant volume. temperature,
and number of particles) or the isothermal-isobaric (constant pressure, temperature,
and number of particles) ensembles [32].
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The simulations of the complex biological systems reported in this discussion
were performed using the recently developed PINY-MD computational package
[34], which includes all the aforementioned new methodologies.

PURE LIPID BILAYERS: LIPIDS WITH HIGHLY UNSTATURATED
CHAINS

Fatty acids with multiple unsaturations or double bonds are quite abundant in
brain gray matter. synaptic membranes, retinal tissue, and in the olfactory bulb [35—
37]. The importance of polyunsaturated lipids. however, seems not to be limited to
a mere structural role. In some situations polyunsaturated lipids are needed for the
proper function of membrane embedded proteins, such as in the case of the G-
protein coupled visual receptor rhodopsin [38]. By modifying the stability of Metar-
hodospin Il (MII) vs. Metarhodospin 1 (MI), which are intermediate molecular
forms of rhodopsin in the cascade that follows the absorption of a photon, the
content of docosahexaenoic fatty acid (DHA) has been shown to affect rhodopsin’s
function [37-41]. Polyunsaturated fatty acids can also modify the activity of recep-
tors by acting as ligands. For instance, the DHA has been recently identified as a
ligand for the retinoid X receptor (RXR) in mouse brain, indicating that DHA may
influence neural function through the activation of an RXR signaling pathway [42].

In simple model phospholipid bilayers, the presence of (c¢is) double bonds in
one or both of the lipid fatty acid chains is known to affect a number of physical
properties of the membranes. Examples of these effects are the low main order-
disorder phase transition temperatures [43, 44], the enhanced permeability to water
and small solutes [45, 46], the enhanced elasticity or decrease in area compressibility
modulus [47-49] etc. The microscopic origin of these properties is, however, far
from being well understood and although classical molecular dynamics simulation
studies have been extensively used to investigate model membranes, earlier studies
of water-lipid phosphatidycholine systems in the Jamellar phase were restricted to
disaturated lipids [3] or lipids or with a low degree of unsaturation [12, 24, 50]. Very
recent MD simulation studies of a [-stearoyl- 2-docosahexaenoyl- sn-glycero- 3-
phosphocholine (SDPC, 18:0/22:6w3 PC) lipid bilayer in the fluid tamellar phase
[11,51,52] have improved our knowledge of the effect of highly polyunsaturated
chains on the structure and dynamics of model membranes. This study was carried
out at constant temperature (7= 30°C) and pressure ( p = 1 atm) in a fully hydrated
membrane consisting of 14,371 atoms (64 lipids and 1761 water molecules) [11].

In Fig. 1 (panel a), we show a snapshot of the SDPC lipid bilayer at the begin-
ning of the equilibrium period, after a long (1.8 ns) equilibration period. The pres-
ence of the polyunsaturated chains (in green), which have the tendency to visit the
lipid—water interface, increase the disorder of the membrane [11,43.51, 53, 54]. This
trend was found also to enhance the interaction of water molecules with the end-
carbon-atoms (and in general with the whole chain) of the polyunsaturated tail [11].
The different behavior of the polyunsaturated chains compared to that of the better
studied saturated chains is due to a different intramolecular conformation and
dynamics [11, 55, 56]. In particular, for the molecular bonds located between two
(cis) double bonds, the dihedral angle distributions present two symmetric maxima
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at +120°, which correspond to the so-called skew™ conformations. In contrast, in
saturated chains they can adopt three conformations: gauche™ and trans; the latter
being the one most energetically favorable. Calculations of the different confor-
mations of the DHA chain [11] indicated that the helical and angle-iron confor-
mations of the region of the polyunsaturated chains comprising three consecutive
cis double bonds are quite stable for the studied thermodynamic state, representing
66% of the lipids. These conformations allow a relatively tight packing of the chains
since consecutive cis double bonds are parallelly oriented. Nevertheless, a significant
fraction of molecules (34%) with conformations (hairpin and other hairpin-like)
where such a tight packing is not possible was observed. This leads to a high degree
of inhomogeneity in the system. In fact, the results obtained for the conformations
and intramolecular dynamics indicated a broad distribution of projected area per
(polyunsaturated) chain and fairly large local fluctuations for transitions between
the different molecular conformations.

Calculation of the experimentally measurable (by NMR) orientational order
parameter profiles from the MD simulations resulted in values for the polyunsatur-
ated chains significantly lower than those for the saturated chain [11]; in good agree-
ment with experiment [57]. To illustrate these differences, we show in Fig. 2(a)
orientational order parameter profiles for the two acyl chains of the SDPC lipid,
which are given by, Scp(n) = 2(3 cos’, — 1), where 3, is the angle between the orien-
tation of the vector along a C-H bond of the n-th carbon atom of the saturated
and/or the polyunsaturated chains and the bilayer normal. One of the advantages
of computer simulation is that it allows one to calculate scparately the different
contributions to the order parameter profiles from the individual lipids with specific
conformations, for instance, of the molecular segments comprising three consecutive
c¢is double bonds of the polyunsaturated chains located at different positions along
the chain [51]. By doing so. one can get insights into the molecular origin of the
different theoretical and experimental findings on these complex organized systems.
In particular, we plot in Fig. 2(b) the partial order parameter profiles for the satu-
rated chain obtained as a function of the configuration of the region of the polyunsa-
turated chain close to the headgroup [51]. Figure 2 (b) shows that different
polyunsaturated conformations have a distinct effect on the orientational order of
their covalently bonded (saturated) chains. Individual conformations of the dihedral
angles close to the lipid headgroup produce differences in the lower region of the
saturated chain (Fig. 2(b)), in agreement with experimental observations [54]. In this
region, the more linear structures (angle-iron and helical) increase the order, whereas
the less straight conformations (hairpin and other) decrease the order of the satu-
rated chains. Contrarily, the order parameters for the upper part of the saturated
chain were only slightly changed as a function of the structure of the polyunsatur-
ated chain.

The tendency of the polyunsaturated chains to visit the lipid—water interface
does not seem to strongly modify the interactions amongst lipid headgroups or
between lipid headgroups and water molecules at the membrane surface compared
with disaturated lipid bilayers [11, 52]. At the interface, which constitutes the most
polar part of the membrane, lipid headgroups and water molecules are strongly
organized [11,52]. This organization is not only found along the bilayer normal,
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where the water molecules are polarized to counteract the effect of the SDPC head-
group P~—N* dipoles, preferentially oriented forming 70° with the bilayer normal.
At the interfacial plane, the lipid headgroups form a network of interacting moieties
to minimize the electrostatic interactions via P~... N' charge pairs {11, 13,52]. In
this network, water molecules interact with the lipid headgroups and even form
bridges among them. This behavior is illustrated in the three-dimensional intermol-
ecular distribution (see Fig. 1, panel b) of the oxygen atoms of the water molecules
(in red) and nitrogen atoms of the lipids (in blue) around the phosphate groups by
the (red) water rings around the non-bonded oxygen atoms (in gray) of the phos-
phate group. Similar distances are preferentially adopted by those atoms within the
same molecule [11], which agrees with the similarities found in the properties for
free and nonfree ions in lipid bilayers. Examples of this phenomenon can be found,
for instance, in the screening of charges in DNA complexes or planar surfaces of
PCs, which leads to forces that does not depend critically on whether the phosphate
and counterion are bonded, as in PCs, or not, as in DNA/tetramethylammonium
systems [58], or in the equal screening of DNA charges by neutral and charged lipids
in DNA /charged-lipid-bilayer complexes [59].

SURFACTANT IN A BIOMEMBRANE

The effect of foreign molecules on phospholipid membranes is a long standing
issue in membrane science. Surfactants form an important class of such foreign

nitrogen (blue). phosphorus (yellow), oxygen (red). hydrogen (white). and carbon (gray) atoms. The
carbon atoms of the polyunsaturated chains of the lipids are highlighted in green. The color code for the
water molecules is as follows: oxygen (blue) and hydrogen (whitc) atoms.

Panel b: Three-dimensional average intermolecular density isosurfaces of the oxygen atoms of the
water molecules (red surface) and the nitrogen atoms of the lipid molecules (blue surface) around the
phosphate group of the SDPC molecule. The color code for the phosphate group of the lipid molecules
is as follows: phosphorus {yellow), non-bonded oxygen (red), and bonded oxygen (gray) atoms.

Panel ¢: Snapshots of the configuration of the DMPC/SDS mixed system near the beginning (a),
and after 3.2 ns of the simulation. The surfactant molecules and the lipid headgroup P and N atoms arc
drawn as spheres, while the lipid chain atoms and water molecules are drawn as sticks. The atom coloring
scheme is N, bluc; P, yellow; S, gray; O. red; C (surfactant). green; C (lipid), black: water molecules,
blue; and Na ions, deep blue. The lipid and surfactant H atoms are not drawn. The surfactant DS chains
are numbered for reference and the system is replicated once on both sides of the central simulation cell
for visual clarity.

Pancl d: Average density isosurfaces of the lipid headgroup nitrogen atoms (blue), and the water
oxygen atoms (green) around a representative sulfate headgroup of the surfactant chain. The surfactant
sulfate group is at the center of the figurc, where the central sulfur atom is drawn in ycllow, while the
anionic and the ester oxygen atoms are drawn as red and gray spheres. respectively.

Panel e: Configuration of the DMPC/DMTAP-DNA complex after 5.5 ns of MD simulation. Two
different vicws are shown: (a) perpendicular to, and (b) along the DNA axis. The DNA and the lipid
head group P and N atoms are drawn as spheres. while the lipid chain atoms are drawn as sticks. The
atom coloring scheme is N. blug; O. red; P, vellow: C (DNA), gray: C (lipid)., green and H. dark gray.
The water molecules and the lipid H atoms arc not shown and the system is replicated once on both sides
of the central simulation cell for visual clarity.

Panel f: Three-dimensional density isosurfaces of the lipid head group nitrogen atoms and the water
oxygen atoms around a representative DNA phosphate group. The probability densities of the cationic
lipid (DMTAP) and ncutral lipid (DMPC) nitrogen atoms are drawn in red and blue, respectively, while
the water density surface is drawn in green. The DNA phasphate group is at the center of the figure with
the nonbonded and bonded oxygen atoms drawn as red and gray spheres, respectively.
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Fig. 2. (a) Orientational order parameter (S, (1)) as a function of
the position of the carbon atom along the chains. The result of the
saturated (black circles) and polyunsaturated (squares) chains are
plotted separately. Error bars represent the standard deviations.
(b) Orientational order parameter profiles of the SDPC saturated
chains obtained by averaging over different conformations of the
region of the polyunsaturated chains close to the headgroups. The
lines are visual guides.

molecules. The study of phospholipid/surfactant mixed bilayer systems is important
not only for many useful biochemical processes, such as, membrane solubilization
[60—62], and protein extraction [63], but also as model systems for understanding
crucial issues, such as, the structure and dynamic properties of such complex systems
[64-66], and the partition of these foreign molecules in the bilayer matrix [67].
Besides, surfactants, being the major constituents of detergents, are released every-
day into the environment, particularly into natural water, Therefore, the questions
of how surfactants interact with biomembranes, and influence their properties are
central issues for both toxicology and environmental science.

Due to technical limitations, it is difficult to carry out well-controlled experi-
ments on lipid bilayer systems with additives. Klose and coworkers {60, 64-66, 68]
have studied in detail the properties of mixed multilayers containing palmitoyloleoyl-
phosphatidylcholine (POPC) lipids and non-ionic surfactants C,E, (monodecyl
ethers of poly(oxyethylene) glycols), using X-ray, neutron diffraction and NMR.

Because of the complex nature of the problem, very little theoretical modeling
has been attempted in this area [67,69]. Atomic based computer simulations can
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play a powerful role in elucidating the properties of these systems at a microscopic
level, and are therefore considered as natural complements to experiments. However,
due to the inherent complexity, there are practically no atomistic simulations of lipid
membranes containing long chain additives, such as surfactants. Only recently there
were a few attempts at MD studies on phospholipid-surfactant mixtures [70, 71].

We reported long all-atom MD simulations of the lamellar phase of a mem-
brane/surfactant mixture containing dimyristoylphosphatidylcholine (DMPC) lipids
and SDS surfactants [70]. The simulation was carried out at 30°C, with a mol frac-
tion of 6.6% surfactant. The system contained 60 lipids, 4 SDS, and 1641 water
molecules. The calculated properties of the mixed system were compared with the
lamellar phase of pure DMPC lipids, and with available experimental data.

In Fig. 1 (panel c), we show snapshots of the configuration of the mixed system
near the beginning and after 3.2 nanoseconds of the simulation. These snapshots
showed how the nearly flat interface at the beginning had undergone perturbations
due to the presence of the surfactants. Such perturbations indicated strong interac-
tions between the surfactant and lipid headgroups. The location of the surfactant
headgroups were obtained from the electron density profiles, as shown in Fig. 3.
The overall distribution of the profiles for the lipid in the mixed system (Fig. 3(b))
is similar to that of the pure system (Fig. 3(a)). The headgroups of the surfactant
chains were found to be located slightly deeper into the bilayer, near the carbonyl
groups of the lipids. To obtain how the negatively charged surfactant headgroups
interact with the zwitterionic phosphocholine (PC) groups, local density isosurfaces
of the PC headgroup nitrogens and water molecules around the sulfate headgroups,
were calculated (Fig. 1, panel d). These distributions reveal strong interactions
between the negatively charged surfactant headgroups and the positively charged
N(CH;);" ends of PC groups. It was also shown that the lipid N(CH3);" groups were
bound to the surfactant headgroups either directly or bridged by water molecules.
The strong interactions between the surfactant and lipid headgroups lead the
P~—N" dipole vector of the lipid headgroups to reorient toward the interior of the
bilayer (as shown in Fig. 4), with 8>90°), where 6 is the angle between P —N"
vector and the bilayer normal.

MEMBRANE PROTEINS: JON CHANNELS

Ion channels are membrane proteins that regulate the flux of ions across cell
membranes [72]. They are present in membranes of all cells and are responsible for
the transmission of signals in many processes such as, excitation and electrical sig-
naling in nerve and muscle synapses, detection of sounds and visual images, etc.
Even though they play a fundamental role in biology, the structural motifs associ-
ated with function are just starting to emerge [72-79].

Since only a few of the structures of these ion channels have been solved with
atomic resolution [73, 74, 80], experimentalists have approached this issue by study-
ing minimalistic (simplified) synthetic peptide [81] channels or the sections of the
protein that constitute the pore region of large native channels (77, 82-84) to get
more insights into their function. These smaller systems, which still retain some or
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Fig. 3. Electron density profiles measured along the bilayer normal, z, for different compo-
nents of the DMPC lipid in the pure (a), and in the mixed system (b). The total electron
density distributions and that arising {rom water are also shown. The density profiles of
the surfactant headgroups (SOy). dodecylsulfate chains (DS), and the sodium counterions
in the mixed system are shown in (¢). The distribution for water is added in (c) for clarity.

most of the functionality of the channels, have been the focus of attention of atom-
istic molecular dynamics simulations [85-89].

The incorporation of relative large membrane proteins, such as ion channels,
in membranes is expected to modify the physical properties of the lipid bilayer.
However, due to the fundamental importance of these proteins most of the effort of
the experimental and theoretical works has been devoted to the study of the effects
of the lipid environment on the structure, dynamics, and function of membrane
proteins. Two cases are of particular interest: the effects on the activity of the grami-
dicin A channel, which due to its simplicity has been extensively studied theoretically
and by computer simulations [90-92], and the effect of specific phospholipids, in
particular those with unsaturations [11], on the activity of the G-protein coupled
visual receptor rhodopsin [39-41]. The key factor in this behavior seems to be the
hydrophobic mismatch, i.e., the difference between the hydrophobic length measured
perpendicular to the membrane surface of the lipid bilayer and the protein. The
membrane curvature seems also to be an important factor, and lipids promoting
inverted hexagonal phases have been shown to be fundamental in some systems.
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Fig. 4. The orientation distribution of the lipid P"— N™ headgroup
dipoles with respect to the bilayer normal, z, for pure DMPC lipids
in L, phase (solid line) and that in the mixture (dashed line).

Recent experiments have been directed to the study of the influence of simple
membrane peptides on the membrane properties in an effort to get more insights
into the structure and dynamics of model membranes. The effect of incorporating
membrane proteins into lipid bilayers changes the phase behavior of the water-lipid
system [93,94] and can even promote nonbilayer phases [93], for instance, single
transmembrane peptides decrease the temperature of the phase transition and
increase the orientational order of the lipid chains [95]. Other NMR experiments
performed on a mostly hydrophobic cationic peptide with two hydrophilic Lys" resi-
dues at each peptide end showed that the order parameters of the hydrophobic
region (membrane interior) were not significantly modified by the peptide in DMPC
lipid bilayers nor in DMPC/DMPS (5:1) but that the peptide affects the membrane
interface by rotating the headgroup dipoles in a direction away from the membrane
plane due to the (sign of the) ““bound” surface charges [96]. In these experiments,
even though a major influence is expected to occur in the lipids located closer to the
peptide, the formation of lipid—protein complexes are usually ruled out at least in
the time scale of the NMR experiments (=107 s) [96]. Systematic NMR and ESR
spectroscopy studies using hydrophobic polypeptides of different lengths [93], how-
ever, indicate that peptides can induce a hydrophobic mismatch that perturbs the
bilayer in a systematic manner (in an effort of the lipids to reduce this mismatch).
Differences obtained for peptides with different shapes indicate also that the top-
ology of the peptide surface modulates the effect of hydrophobic mismatch [93, 95].

To investigate the effect of the presence of ion-channel forming peptides on the
physical properties of the lipid environment, atomistic MD simulations of the trans-
membrane homopentameric bundle of the o-helical M2 segments which are believed
to form the pore region of the nicotinic acetylcholine receptor (nAChR) 1on channel
[83, 84] were recently performed [89]. The nAChR is the neurotransmitter-gated ion
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channel responsible for the rapid propagation of electrical signals between cells at the
nerve-muscle synapse [72] Previous simulation studies on the sAChR were focused
exclusively in protein—protein interactuions of simplified models or the effects of a-heh-
25 environment on the secondary structure. The peptide bundle was embedded in a
i:ua!y fiydrated DMPC lipid bilayer in the Hoid lamellar phase, L, at arabient con-
ditions {7 =303 Kand p = Latma)w n;'n a lipid/peptide melar ratio of 19:1 {89]. The M2
segments are characterized by the sequence GSEKMSTABVLLAQAVFLLLTSQR
and correspond to the § subuait of the pative nAChR 1on channel of Rariuy acrveg-
icus {841
In Fig. 5, wa show a snapshot of the simulated sysiem after 2 ns. Preliminary
results [97] indicate that the main effect of the incorporation of tm wn chunoel nto
the DMPC lipid bilaver consists of an increase of the bilayer thickness and of the
orientational order of the TIMPO Hipd ac } chaing. Other effects mclude: periur-
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interface; and a change in the analyzed properties as a function of the distance of
the lipid from the bundle center of mass. The behavior of the lipids located at the
two different leaflets differed. Some of these effects seem to be associated with the
formation of lipid—protein complexes. Lipid-peptide interactions, mainly via Lys",
which is located at the external surface of the peptides, with the lipid phosphate
groups, have also been observed.

LIPID-DNA COMPLEXES

Human gene transfer is an important clinical strategy in which a segment of
extracellular DNA is transferred to the nucleus of cells to replace or add genes [98—
100]. Gene transfer involves the delivery of a cassette made up of one or more genes
and the sequences controlling their expression to target cells. At present, the most
common method of gene delivery uses viral-based carriers of DNA [98, 101, 102]. Tt
has been known for some time that binary mixtures of suitable cationic and neutral
lipids can form stable complexes with DNA and hence can potentially be used as
synthetic carriers of DNA [103]. Recently, the study of lipid—-DNA complexes has
received considerable attention [99-102, 104-116]. X-ray studies by Safinya et al.
[104, 105] discovered that mixtures containing the unsaturated neutral DOPC
(dioleoylphosphatidylcholine) and the cationic DOTAP (dioleoyltrimethylammon-
ium propane) lipids form a novel multilayer structure with alternating lipid bilayers
and DNA monolayers, in which the DNA chains form a two-dimensional smectic
phase, intercalculated between lipid bilayers. Rédler and coworkers [106, 107] used
binary mixtures of the saturated neutral and cationic lipid DMPC and DMTAP to
complex with DNA. These intercalated complexes exist in two lamellar phases, the
gel phase (Lj) at low temperatures and the fluid-like lamellar phase (Lg) at higher
temperatures.

Due to the lack of understanding of the lipid—DNA complexes, and the nature
of interactions between the DNA and the lipids, the development of synthetic non-
viral carriers remains preliminary. Few theoretical calculations have been carried
out that help rationalize the observed structures of the lipid—-DNA complexes [111-
115]. Atomistic based MD simulations can play an important role in elucidating the
structural and other properties of such systems. However, due to the complex nature
of the problem, no atomistic computer simulation study has been attempted so far
to study such systems. Only recently, we performed an all-atom MD simulations of
lipid~DNA complexes containing DMPC and DMTAP lipids [59]. This simulation
was carried out in the liquid crystalline L;, phase of the complex (T'= 50°C). The
simulation was carried out at an isoelectric point containing 24 DMPC, 20 DMTAP,
1003 water molecules, and a DNA duplex d(CCAACGTTG),. The details of the
system setup and simulation details can be found elsewhere [59].

Figure 1 (panel ¢) shows the configuration of the system after a long 5.5 nano-
seconds of simulation. The most interesting and important feature to note from Fig.
1 is the structure of the lipid—-DNA interface. It is clear that significant undulations
developed near the lipid head group region of the interface as compared to the
nearly flat interface of the lipid bilayer.
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Calculation of the three-dimensional local density isosurfaces of the lipid head
group nitrogen atoms as well as the water molecules around the DNA phosphate
groups (Fig. 1, panel f) reveal that a large fraction of the cationic lipids, are bound
to the DNA phosphate groups either directly or bridged by water molecules. How-
ever, the most interesting feature was the significant population of the zwitterionic
PC head group nitrogens of DMPC in proximity to a DNA phosphate group. Our
results predicted the existence of TAP and PC groups with about equal probability
around the DNA phosphates. From a similar estimation, we found that there are
roughly 2.5 water molecules per non-bonded DNA phosphate oxygen atom within
a typical nearest neighbor distance of ~3.3 A, which confirms the existence of water
molecules bridged between the lipid head groups and the DNA phosphates.

The reason behind such an apparently surprising distribution as shown in Fig.
1 (panel f) is the attractive electrostatic interaction between the cationic TAP head
group and the anionic phosphate of the zwitterionic PC head group of DMPC. In
Fig. 6 we show a snapshot from the simulation illustrating the lipid-lipid and lipid—
DNA contacts (salt bridges). For clarity, we have shown only the N" and P~ atoms
of the PC and N* atoms of the TAP groups corresponding to one monolayer and
the phosphate groups of the DNA, which are close to that layer. Figure 6 clearly
shows the existence of three distinct types of contact bridges as marked by circular
regions. Region I, shows a P-N"—P N type of bridge between the PC groups, typi-
cal of a pure lipid bilayer structure [13]. Similar bridged configurations are identified
in Region 2, were the N' of the PC group is replaced by the cationic N* of the
TAP group. The existence of such configurations unambiguously demonstrates the
presence of strong electrostatic interactions between the PC and TAP head groups.
This leads to the formation of contact pairs of DMPC-DMTAP lipids with the P~
end of the P-N" dipole approximately at the same distance (~4.5 /DX) from the PC
head group N" as from the N™ of the TAP group. Such interactions also induce a
change in orientation of the P-N" head group dipoles of DMPC with the N™ part
pointing away from the bilayer plane and hence coming into more effective contract
with the anionic DNA phosphate, as illustrated in Region 3 of the snapshot. The
explicit arrangements of the atoms in these three regions are shown in the insets of
Fig. 6.

This study showed that the current generation of simulation methodologies and
force fields have the ability to offer valuable insights into such complex systems with
potential biomedical applications.

PERSPECTIVES

The examples considered in the previous sections illustrate the current ability
of computer simulations to describe model membranes of a considerable degree of
complexity. The membranes of cells are, however, composed of an heterogeneous
mixture of various components and one would like also to learn about their lateral
organization. Recently, there have been a few attempts to study model systems with
a mixture of lipids [117, 59] and special attention has been devoted to cholesterol
[118-124] and its role in the formation of microdomains [125]. This is particularly
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the modeling of human bile, which consists of a mixture of phospholipids, bile salts,
and cholesterol, and forms micelles under supersaturated conditions [127].

Lipid-protein and protein—protein interactions in membrane environments play
a fundamental role not only in the folding of natural proteins or association of
synthetic peptides but also in the mechanisms of action of toxins and antimicrobial
peptides or other peptides with lytic activity, which are lethal to the cells. Peptide
aggregation in membranes and the formation of pores is, thus, becoming a very
challenging problem, for both computer and experimental studies. Recent experi-
ments using novel X-ray methods to study peptide aggregation (at low concen-
trations) and its role in pore formation provide structural evidence that self-
association of amphipathic helices at the membrane surface may be the crucial initial
step toward bilayer destabilization and, consequently, the formation of pores [128].
The two state model proposed recently for the action of antimicrobial peptides [129],
in contrast, reviews the latest experimental literature in the field and found no indi-
cation of helix association of peptides at the membrane interface for the intermediate
state between a regime (at low lipid/peptide concentration) where the peptide
adsorption at the interface occurs and a regime (at high lipid/peptide concentration)
where the pores are formed. Similarly, in membrane protein folding, a reasonable
scenario is the two stage model [130]. In a first stage, the helical regions of the
protein or model (synthetic) peptides insert in the bilayer, and then oligomerization
takes place. However, it is worth emphasizing that this thermodynamic model is just
one possibility (reviewed in Ref. [131]) and that the process of insertion and assembly
are far from being well understood.

Recent computer simulations demonstrate that processes such as spontaneous
aggregation of phospholipids into bilayers or collective phenomena, such as the
appearance of spontaneous undulations, can be followed and studied with atomistic
detail. In particular, Marrink et a/. [132] followed the formation of a DPPC lipid
bitayer from a random configuration of lipids during 10-100 ns and identified the
reduction and subsequent disappearance of transmembrane water pores as the rate-
limiting process of the aggregation. The extension of the size of the system to lengths
larger than the thickness of the bilayer permits the development of spontaneous
undulations and, thus, the study of collective phenomena. Bending modes have been
extensively studied and a spectral decomposition of the mesoscopic undulations and
thickness fluctuation modes (into peristaltic, undulatory, and protrusions) was per-
formed [133] and mesoscopic properties, such as the bilayer bending modulus, have
been accurately calculated. Simulations show that the membrane properties in the
long wavelength limit can be reproduced by continuum models. These two examples
are illustrative of the latest achievement on time and length scales available for
molecular dynamics simulations. These mesoscopic regimes reached nowadays by
atomistic simulations were only available to simplified models. Among these models,
those of the coarse-grain type [134, 135], for instance, which are adjusted to mimic
a specific system instead of a general phenomenon, are still useful since they are
significantly more efficient than atomistic models to study collective phenomena.

There are many issues from a more theoretical/methodological point of view
that should be addressed, even though it is clear that most of the effort is being
devoted to the modeling of more complex (multicomponent) systems. The main
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concern is the ability of computer simulations to reproduce experiments and exper-
imental conditions. Due to the finite size of the computer simulations, the study of
system size on the physical properties of the model membranes has always been an
important topic [6, 17, 133,136, 137]. The extension of temporal and spatial scales
up to mesoscopic regimes has permitted the further evaluation of finite-size effects.
In the case of the surface tension, for instance, earlier simulations [6] indicated that
the surface tension decreases with increasing size of the systems. Surface tension,
thus, depends strongly on surface area and a decrease in the surface compressibility
has been observed due to undulatory modes [133, 136]. This effect, however, appears
to depend on the stress conditions [136]. Even in very simple model systems large
deviations are present between literature values for structural quantities, such as the
surface area per lipid, due to the presence of fluctuations, inherent in disordered
lamellar phases. Recently, these structural parameters and material properties are
being updated, reviewed, and adjusted, and are becoming available [48, 138].

CONCLUSION

The past decade has yielded revolutionary advances in computer hardware tech-
nology along with concomitant development of state-of-the-art simulation method-
ologies. These two factors have enabled the successful application of computer
simulation methods in general, and molecular dynamics (MD) in particular, in fron-
tier areas of biomedical research. In this article, we reviewed recent progress that
has been made in computer simulation studies of model biomembranes and other
important membrane related structures. We discussed several examples where, in the
recent past, large scale atomistic MD techniques have been successfully employed.
These studies include highly polyunsaturated lipid bilayers, membrane proteins
forming ion-channels, effects of surfactant impurities on biomembranes, and lipid—
DNA gene transfer complexes. The results obtained from all these studies were in
excellent agreement with experiments. This clearly indicates that MD simulations
can provide valuable insights in elucidating the structural, dynamical, and functional
properties of such complex systems and can act as powerful complements to real
experiments and much less detailed theoretical models. The successes achieved in the
past decade indicate that the use of atomistic computer simulations as a means of
probing even more complex biological systems will inevitably continue.
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