POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-15

Integrating Innovation and Entrepreneurship into the REU Experience

D. SHREIBER¹, S. ENGELHARDT¹, T. MAGUIRE¹, AND M. YARMUSH¹ Rutgers, The State University of New Jersey, Piscataway, NJ

P-Th-16

Examining the Impact of a Peer-to-peer Mentoring Program Through the Lens of Social Capital Theory

J LE DOUX¹

Georgia Institute of Technology, Atlanta, GA

P-Th-17

Ph.D. Boot Camp: the Kickoff for Training Innovative Leaders in Biofabrication

K. BILLIAR¹, G. GAUDETTE¹, F. HOY¹, M. ROLLE¹, AND T. CAMESANO¹ Worcester Polytechnic Institute, Worcester, MA

P-Th-18

Enhancing High School STEM Education Through Research-related Bioengineering Experiences

L. TOSTANOSKI1, A. JONES1, AND C. JEWELL1,2,3

¹University of Maryland, College Park, MD, ²University of Maryland Medical School, Baltimore, MD, ³Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD

Track: Biomedical Engineering Education (BME) Biomedical Education:

Innovative Learning Modules and Instructional Materials Posters

P-Th-19 DREAM TEAM & CENTER

Improving Peer-Reviewing of Reports Through Calibration and Direct Instructor Feedback

J. LINNES¹, N. BAJAJ¹, A. ABOELZAHAB¹, A. BRIGHTMAN¹, AND A. RUNDELL¹

*Purdue University, West Lafayette, IN

P-Th-20

Encouraging Curiosity, Connections, and the Creation of Value in a Materials/Biomaterials Sequence: Part II Biomaterials

S. ZUSTIAK¹

¹Saint Louis University, St Louis, MO

P-Th-21

An Interactive Training Tool to Help Reduce Error Rate Associated with Shared Infusion Volume

K. TSANG^{1,2}, S. PINKNEY¹, C. COLVIN¹, AND P. TRBOVICH^{1,2}

¹University Health Network, Toronto, ON, Canada, ²University of Toronto, Toronto, ON, Canada

P-Th-22

Bringing Real World Expertise Into Class: An Industry Partnership To Teach Biomedical Design

L. KHUON¹, ², J. B. ZURN³, ⁴, G. HERRERA⁵, ⁶, AND K. ZURN³, ⁷

¹Drexel University, Philadelphia, PA, ²University of Pennsylvania, Philadelphia, PA, ³Villanova University, Villanova, PA, ⁴Sunshine Labs, Longwood, FL, ⁵Med Associates, Inc., St. Albans, VT, ²Florida Research & Development, Inc., St. Albans, VT, ²Florida Research Instruments, Cocoa Beach, FL

P-Th-23

Engaging Students to Enrich their Learning through Developing Course Materials

M. POOL¹ AND K. GRAY²

¹University of Illinois at Urbana Champaign, Urbana, IL, ²West Virginia University Institute of Technology, Montgomery, WV

P-Th-24

The 'Good', the 'Bad', and the 'Ugly' Biostatistics for Bioengineering Students

Y KIM¹

¹Purdue University, West Lafayette, IN

Track: Biomedical Engineering Education (BME) Biomedical Education:

Laboratory Modules and Instructional Materials Posters

P-Th-25

Flipping the Lab: Introducing a Flipped Classroom Model Into a Laboratory Class

A. ABOELZAHAB¹ AND T. KINZER-URSEM¹

¹Purdue University, West Lafayette, IN

P-Th-26

Nanotechnology for Biomedical Engineers and STEM Majors: Bringing Multidisciplinary Nanotechnology into the Classroom

R. PEREZ-CASTILLEJOS¹

¹NJIT, Newark, NJ

P-Th-27

${\bf Educational\,Videos\,\,Help\,\,Improve\,\,Student\,\,Understanding\,\,in\,\,a\,\,Laboratory\,\,Course}$

R. RAMOS¹, B. GHOSN¹, AND C. LIVINGSTON¹
¹Rice University, Houston, TX

P-Th-28

Assessment of Student Value and Scientific Literacy in an Introductory Biomaterials Laboratory

C. ANKENY¹ AND S. STABENFELDT¹
¹Arizona State University, Tempe, AZ

P-Th-29

A Template for Multi-Disciplinary Team-Based Problem Solving, Design, and Assessment: Application in Biomedical Engineering

S. ZUSTIAK¹, S. SELL¹, AND G. GAUDETTE²

¹Saint Louis University, St Louis, MO, ²Worcester Polytechnic Institute, Worcester, MA

Track: Bioinformatics, Computational and Systems Biology

Computational Modeling and Systems Approaches:

Algorithms for Computational/Systems Biology Posters

P-Th-30

A Unified Sparse High-Dimensional Association Test for Quantitative Traits in Complex Relatedness

S. CAO¹, H. QIN1, A. GOSSMANN¹, H-W. DENG¹, AND Y-P. WANG¹¹Tulane University, New Orleans, LA

P-Th-3I

Online Remote Monitoring of Heart Rate Variability

M. THOME¹, J. SALINET¹, R. RODRIGUES¹, AND D. GOROSO¹

"Mogi das Cruzes University, Mogi das Cruzes, Brazil

P-Th-32

Classifying Brain States Using Machine Learning Techniques

A. RAJAN¹, S. MEYYAPPAN¹, E. OPRI¹, R. SITARAM¹, AND M. DING¹
¹University of Florida, Gainesville, FL

P-Th-33

NCLX Mitochondrial Exchanger Blocking: Simulation vs Experiment

E. T.N.T DA SILVA¹, D. GOROSO¹, AND R. RODRIGUES¹ Mogi das Cruzes University, Mogi das Cruzes, Brazil

POSTER SESSION Thurs 9:30AM – 5:00PM

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-34

Assessing Granger Causality in Electrophysiology: Unipolar vs. Bipolar Signals

B. NANDI¹, A. TRONGNETRPUNYA¹, D. KANG¹, B. KOCSIS2, C. SCHROEDER3, AND M. DING

¹University of Florida, Gainesville, FL, ²Harvard Medical School, Boston, MA, ³Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY

Use of Smartphone's Accelerometer to Estimate Physical Activity Energy Expenditure

M. ISHIZAKI1, R. RODRIGUES1, AND D. GOROSO1 ¹Mogi das Cruzes University, Mogi das Cruzes, Brazil

Nexperiment: User Friendly Model-based Design of Experiments Software

A. SAI1, T. MDLULI1, A. RUNDELL1, AND G. BUZZARD1 ¹Purdue University, West Lafayette, IN

P-Th-37

Assessing Effects of Sequencing Depth on ChIP-seq Quality and Peak Calling Performance

A. Lo¹, B. Phan², D. Walsten², R. Karchin², B. Maher³, and A. Jaffe³ ¹Johns Hopkins University, Holden, MA, ²Johns Hopkins University, Baltimore, MD, ³Lieber Institute for Brain Development, Baltimore, MD

Use of Existing CAD Models for Radiation Shielding Analysis

J. BARZILLA¹, K. LEE², P. WILSON³, A. DAVIS³, AND J. ZACHMAN³ ¹Lockheed Martin, Houston, TX, ²NASA, Houston, TX, ³University of Wisconsin, Madison, WI

Track: Bioinformatics, Computational and **Systems Biology**

Computational Modeling and Systems Approaches:

Dynamics of Biological Systems Posters

Integrative Modeling Identifies VEGFRI as an Essential Regulator of VEGF-Induced Migration

J. WEDDELL¹ AND P. IMOUKHUEDE¹ ¹University of Illinois at Urbana-Champaign, Urbana, IL

P-Th-40

A Crosstalk-Based Linear Filter Design in Biochemical Signal Transduction

M. LADDOMADA¹, D. MAHAN¹, AND M. PIEROBON²

¹Texas A&M University, Texarkana, Texarkana, TX, ²University of Nebraska-Lincoln, Lincoln, NE

A Quantitative Analysis of Natural Killer Cell Response to IL-15 Stimulation

A. THROM1 AND A. FRENCH1

¹Washington University in St. Louis, St. Louis, MO

P-Th-42 DREAM TEAM & CENTER

Characterizing Chemotherapy Effects on Hematopoietic Stem Cell Differentiation

J. SARKER¹,², S. ROBERTSON², D. UMULIS¹, R. NELSON², AND A. RUNDELL¹ ¹Purdue University, West Lafayette, IN, ²Indiana University School of Medicine, Indianapolis, IN

P-Th-43

Protease Site-directed Mutagenesis Distinguishes Cannibalistic Interactions in Proteolytic Networks

M. FERRALL 1. M. AFFER2, AND M. PLATT1

¹Georgia Institute of Technology and Emory University, Atlanta, GA, ²Georgia Institute of Technology, Atlanta, GA

P-Th-44

Regulation of Integrin Activation in Neovascularization by Basement Membrane Proteins and Inhibitors

N. BAJAJ¹, T-C. Wu¹, S. VOYTIK-HARBIN¹, D. UMULIS¹, AND A. RUNDELL¹ ¹Purdue University, West Lafayette, IN

Spatiotemporal Kinetic Modeling of the Myocardin-Related Transcription Factor-A Regulatory Axis

B. SPAR1 AND C. NELSON1 ¹Princeton University, Princeton, NJ

P-Th-46

Regulation of Cell Motility and Proliferation by Cellular Signaling: Role of STAT3

T. ISLAM¹, Z. SPETH¹, K. BANERJEE¹, AND H. RESAT¹ ¹Washington State University, Pullman, WA

P-Th-47

Fluorescence Lifetime Mapping of NADH Reveals DNA Repair Activity in

M. MURATA¹, X. KONG¹, K. YOKOMORI¹, AND M. DIGMAN¹ ¹University of California, Irvine, Irvine, CA

P-Th-48

Dynamic Indirect Measurement of the Daily Macronutrient Oxidation Rate, Changes of Fat and Fat Free Mass u/u

¹Duke University Health System, Durham, NC

P-Th-49

Regulation of Oxidative Stress in Endothelial Cells

H. PATEL1, C. PRESNELL1, AND M. KAVDIA1 ¹Wayne State University, Detroit, MI

P-Th-50

The Role of the Human Amygdaloid Complex in Fear Conditioning:

A FUNCTIONAL CONNECTIVITY ANALYSIS

S. Yin¹, Y. Liu², A. Keil¹, and M. Ding¹

¹University of Florida, Gainesville, FL, ²University of California, Davis, Davis, CA

Track: Cancer Technologies

Computational Modeling and Systems Approaches:

Computation Modeling of Cancer Growth and Treatment Posters

P-Th-5I

Parametric Analysis of Cancer Dynamics: An Evaluation of Environmental Contributing Factors

R. ABIRI¹, I. ZELLER¹, AND X. ZHAO¹

¹The University of Tennessee, Knoxville, Knoxville, TN

Track: Respiratory Bioengineering Computational Modeling and Systems Approaches:

Computational Modeling of the Airway Posters

P-Th-52 DREAM TEAM & CENTER

3D Agent-based Models of Airway Remodeling to Investigate Treatment Courses for Asthma

H. KAUL¹, M. BURKITT¹, C. NEWBY², AND R. SMALLWOOD¹

¹University of Sheffield, Sheffield, United Kingdom, ²University of Leicester, Leicester, United Kingdom

9:30AM – 5:00PM **POSTER SESSION Thurs**

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-53

A Computation Model of Airflow in the Main Airways of the Lung

P. GAMAGE¹ AND H. MANSY

¹University of Central Florida, Orlando, FL

P-Th-54

Non-Stationary Analysis for Tracking Temporal Variations In Impedance During Oscillometry.

H. HANAFI¹, G. MAKSYM², AND K. EL-SANKARY²

¹dalhousie university, halifax, NS, Canada, ²Dalhousie University, halifax, NS, Canada

A Complete CFD Model of Pharmaceutical Aerosol Deposition in the Lungs: Validations with In vivo Data

W. LONGEST¹, G. TIAN¹, AND M. HINDLE

Virginia Commonwealth University, Richmond, VA

P-Th-56

A Statistical Mechanical Model of Spontaneous Airway Constriction

B. SUKI¹, A. CHANG², J. PILLOW², AND P. NOBLE²

¹Boston University, Boston, MA, ²University of Western Australia, Perth, Australia

P-Th-57

Experimental and Numerical Analysis of Micro-beads Velocity in a Flow Induced by Cilia Motion

M. BOTTIER¹, M. PEÑA FERNÁNDEZ², G. PELLE², E. BEQUIGNON², D. ISABEY², A. COSTE², E. ESCUDIER3, M. MANOLIDIS4, J. B. GROTBERG4, J-F. PAPON2, B. LOUIS2, AND M.

¹Inserm U⁹⁵⁵, Creteil, France, ²Inserm U⁹⁵⁵, Créteil, France, ³Inserm U⁹³³, Paris, France, University of Michigan, Ann Arbor, MI, Ecole Polytechnique, Palaiseau, France

Increased Variability in Airway Wall Thickness Can Explain Ventilation Defects (VDefs) at Lower Levels of Airway Smooth Muscle Stimulation T. WINKLER¹ AND J. G. VENEGAS¹

¹Massacusetts General Hospital and Harvard Medical School, Boston, MA

P-Th-59

Pressure and Velocity Relationships of Inspired Air into the Human Lung P. AGHASAFARI¹, I. BIN M. IBRAHIM¹, R. ARAMBAKAM¹, AND R. PIDAPARTI¹ ¹University of Georgia, Athens, GA

P-Th-60

A Novel Computational Fluid-particle Dynamics (CF-PD) Model for Multicomponent Droplet-vapor Aerosol Mixture Transport, Phase Change and Deposition in an Idealized Trachea-to-GI Airway

Y. FENG¹ AND C. KLEINSTREUER¹ ¹North Carolina State University, Raleigh, NC

Track: Bioinformatics, Computational and **Systems Biology**

Computational Modeling and Systems **Approaches:**

General Approaches Posters

Optimizing Normalization Feature For Volumetric Brain Measurement

N. SOBERON¹, M. MARKEY¹, AND N. VERMA¹

¹The University of Texas at Austin, Austin, TX

P-Th-62

Theta-Rhythmic Drive Between Medial Septum and Hippocampus in Slow Wave Sleep and Microarousal: A Granger Causality Analysis

D. KANG¹, M. DING¹, I. TOPCHIY², L. SHIFFLETT², AND B. KOCSIS²

¹University of Florida, Gainesville, FL, ²BIDMC, Harvard Medical School, Boston, MA

P-Th-63

High-Throughput Assessment Algorithm to Predict Skin Sensitization Using In Vitro Alternatives to Animal Testing

S. LEE1, T. GREENSTEIN1, T. MAGUIRE1, R. SCHLOSS1, AND M. YARMUSH1 ¹Rutgers University, Piscataway, NJ

P-Th-64

Automatic Cell Selection Method for Pap Smear Test

Q. MIAO1, J. DERBAS2, A. EID1, H. SUBRAMANIAN1,2, AND V. BACKMAN1,2 ¹Northwestern University, Evanston, IL, ²Nanocytomics LLC, Evanston, IL

Protein Osmotic Pressure in the Presence of Sodium-based Salts at Moderate Ionic Strength

C. HALE¹, D. ORNELAS¹, L. CHANG¹, AND V. RODGERS¹
¹University of California - Riverside, Riverside, CA

Track: Bioinformatics, Computational and **Systems Biology**

Computational Modeling and Systems **Approaches:**

Multiscale Modeling Posters

P-Th-66 DREAM TEAM & CENTER

Computational Human Fetal Growth Model of Hypoplastic Left Heart Syndrome: Reduced Ventricular Growth Due to Decreased Preload

S. DEWAN¹, A. KRISHNAMURTHY¹, R. KERCKHOFFS¹, J. OMENS¹, H. SUN², V. NIGAM¹, ², AND A. MC CULLOCH1

¹University of California at San Diego, La Jolla, CA, ²Rady Children's Hospital at San Diego, San Diego, CA

P-Th-67

A Predictive Multiscale Model for Simulating Platelets Activation in Shear

P. ZHANG¹, C. GAO¹, N. ZHANG¹, M. SLEPIAN², Y. DENG¹, AND D. BLUESTEIN¹ ¹Stony Brook University, Stony Brook, NY, ²University of Arizona, Tucson, AZ

Modeling of Neonatal Hemodynamics during PDA Closure

S. SOLEYMANI¹,², M. KHOO¹,³, S. NOORI²,³, AND I. SERI²,

¹University of Southern California, Los Angeles, CA, ²Children's Hospital Los Angeles, Los Angeles, CA, ³Keck School of Medicine, USC, Los Angeles, CA, ⁴Sidra Medical and Research Center, Doha, Qatar

P-Th-69

Mathematical Modeling of Laser Irradiation of Port Wine Stain Blood Vessels Containing Erythrocyte-Derived Particles Doped with Indocyanine Green

J. BURNS¹, W. JIA², V. SUN², J. S. NELSON², AND B. ANVARI¹

¹University of California, Riverside, Riverside, CA, ²University of California, Irvine, Irvine, CA

Quantifying the Consistency of Self-assembly of Single Cardiomyocytes

N. DREW¹, D. BALDO¹, J. CORE¹, M. TAGLE RODRIGUEZ¹, AND A. GROSBERG¹

¹University of California, Irvine, Irvine, CA

P-Th-71

Flexible Tails Regulate the Functions of β -Catenin

B. ZHAO¹ AND B. XUE¹

¹University of South Florida, Tampa, FL

9:30AM – 5:00PM **POSTER SESSION Thurs**

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-92

Arrhenius Model of Thermal Damage during Laser Interstitial Thermal Therapy for Renal Cell Carcinoma

M. ISHAHAK¹, L. FONTANEDA¹, S. ARECHAVALA¹, N. SALAS¹, AND R. J. LEVEILLEE¹, 2 ¹University of Miami, Coral Gables, FL, ²Miller School of Medicine, Miami, FL

Operational Consistency Of Medical Linear Accelerator Performance **Parameters**

C. NGUYEN¹,², C. M. ABLE², A. H. BAYDUSH², S. ISOM², AND M. T. MUNLEY¹,² $^{1}Virginia\, Tech$ - Wake Forest School of Biomedical Engineering and Sciences, Winston Salem, NC, 2Wake Forest School of Medicine, Winston Salem, NC

Design behind Improving Efficiency in Endotracheal Tube Changes

J. MITCHELL¹, P. BROWN¹, AND M. OLYMPIO²

¹Virginia Tech - Wake Forest University, Winston-Salem, NC, ²Wake Forest Baptist Health, Winston-Salem, NC

P-Th-95

Optimized Musculoskeletal Parameters For Predicting Multi-Joint Wrist And Hand Movement From Limited EMG Signals

D. CROUCH¹,² AND H. HUANG¹,

¹North Carolina State University, Raleigh, NC, ²University of North Carolina at Chapel Hill, Chapel Hill, NC

P-Th-96

Detecting Leader-Follower Relationship in EEG Hyperscanning

L. WAN1, S. DIKKER2,3, D. POEPPEL2,4, AND M. DING1

¹University of Florida, Gainesville, FL, ²New York University, New York, NY, ³Utrecht University, Utrecht, Netherlands, 4Max Planck Institute, Frankfurt, Germany

P-Th-97

Analytical Solution for Time-Dependent Potentials in a Cylindrical Fiber W. NEU1

¹Duke University, Durham, NC

P-Th-98

A Conical Antenna for Stimulating Neurological Tissue

R. PETRELLA^{1,2} AND S. XIAO^{1,3}

¹Old Dominion University, Norfolk, VA, ²Frank Reidy Center for Bioelectrics, Norfolk, VA

P-Th-99

Design of a Low-cost Wireless Near-infrared Spectroscopy System Using Embedded Linux

D. DIAS1 AND N. KASHOU1

¹Wright State University, Dayton, OH

P-Th-100

Seizure Detection Using Peak Counting In A Fully Implantable Wireless Device For Rodents Seizure Detection Using Peak Counting In A Fully Implantable Wireless Device For Rodents

D. PEDERSON¹ AND P. IRAZOQUI¹

¹Purdue University, West Lafayette, IN

P-Th-101

Assessment of Electrode Surface Area in Electrical Impedance Myography Study Using Finite Element Method

M. AHAD¹ AND S. BAIDYA¹

¹Georgia Southern University, Statesboro, GA

P-Th-102 DREAM TEAM & CENTER

Identification of Deep Brain Stimulation Targets From a Cohort of Parkinson's Disease Patients

G. Duffley¹,², D. Chen³, K. Foote³,⁴, M. Okun³,⁴, and C. Butson¹,² ¹University of Utah, Salt Lake City, UT, ²Scientific Computing and Imaging (SCI) Institute, Salt Lake City, UT, ³University of Florida, Gainesville, FL, ⁴Center for Movement Disorders and Neurorestoration, Gainesville, FL

P-Th-103

Development of Practical Silicone Ventricles for Testing Direct Mechanical Ventricular Actuation

T. FISCHER¹, N. LOEBER¹, L. CHIA¹, B. SCHMITT¹, Y. ZHOU¹, D. REYNOLDS¹, AND M. ANSTADT

¹Wright State University, Dayton, OH

P-Th-104

Using Human Factors to Redesign a Laparoscopic Suturing Device for Female Surgeons

J. Baril¹, D. Peterson², K. Horton³, and J. Malkowski³ ¹University of Connecticut, East Granby, CT, ²Texas A&M Texarkana, Texarkana, TX,3Medtronic, New Haven, CT

P-Th-105

The Interaction Model Development and Simulation of Wireless Laparoscopic Camera and Abdominal Wall Tissue

R. YAZDANPANAH ABDOLMALAKI¹, X. LIU¹, AND J. TAN¹ ¹University of Tennessee, knoxville, TN

P-Th-106

Design and Implementation of a Portable ECG Signal Transmission Prototype

S. DEHGHANOJAMAHALLEH1 AND M. KAYA1

¹Florida Institure of Technology, Melbourne, FL

P-Th-107

The Efficacy of a Novel Surgical Tool that Reduces Complications Associated with Spinal Revision Surgery

H. HUANG¹, T. CATULLO¹, S. JOHANNESSON¹, B. KIM¹, E. URIAS¹, E. CHIANG¹, A. SUBRAMANYA1, AND T. SUN1

¹Johns Hopkins University, Baltimore, MD

P-Th-108

Impact of Geometric Variation on Sealing Capability of a Medical Valve R. HE¹

¹Baxter International Inc., Round Lake, IL

Track: Bioinformatics, Computational and Systems Biology

Computational Modeling and Systems Approaches:

Proteomics, Genomics, and Metabolomics Posters

A Systems Biology Approach to Competitive Metabolism between Omega-3 and Omega-6 Fatty Acids in Inflammatory Macrophages

S. GUPTA¹, Y. KIHARA¹, M. MAURYA¹, P. NORRIS¹, E. DENNIS¹, AND S. SUBRAMANIAM¹ ¹University of California, San Diego, La Jolla, CA

P-Th-110

Evaluating the Impact of Sequencing Error Correction for RNA-seq Data

L. TONG^{1,2}, C. YANG^{1,2,3}, P-Y. WU¹, AND M. D. WANG^{1,2}

Georgia Institute of Technology, Atlanta, GA, ²Emory University, Atlanta, GA, ³Peking University, Beijing, China, People's Republic of

P-Th-III

Oxidative Stress Induced Senescence in Human Umbilical Vascular **Endothelial Cells**

S RAGHUNANDAN

¹University of California, San Diego, La Jolla, CA

Making Biological Sense of Important Genes in Breast Cancer and their Coordinated Behavior: Preliminary Results

C. MARRERO

¹University of Puerto Rico at Mayagüez, Mayagüez, Puerto Rico

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

Track: Bioinformatics, Computational and **Systems Biology**

Computational Modeling and Systems Approaches:

Single-cell Measurements and Models Posters

Single Cell Western Blotting to Study Stem Cell Heterogeneity

D. SPELKE^{1,2}, A. HUGHES^{1,2}, Z. XU¹, C-C. KANG¹, E. CONNELLY¹, A. HERR¹, AND D.

¹University of California, Berkeley, Berkeley, CA, ²University of California, San Francisco, San Francisco, CA

P-Th-114

Cell Deformation In A Cross-Channel: Integration Of Computational Modeling With DC Experiment

Z. SHENG¹, H. LAN², H. MUNOZ³, D. DI CARLO³, AND D. KHISMATULLIN¹ ¹Tulane University, New Orleans, LA, ²University of California - San Diego, San Diego, CA, ³University of California - Los Angeles, Los Angeles, CA

P-Th-115

Modeling the Mitochondrial Control of Shear-Induced Calcium Dynamics in Vascular Endothelial Cells

R. BUCKALEW¹, J. PARIKH², C. SCHEITLIN¹, D. TERMAN¹, N. TSOUKIAS², AND B. R. ALEVRIADOU1

¹The Ohio State University, Columbus, OH, ²Florida International University, Miami, FL

Laser Ionization/Desorption Droplet Delivery Mass Spectrometry for Single Cell Analysis

J. K. LEE¹,², H. G. NAM²,³, AND R. ZARE¹

¹Stanford University, Stanford, CA, ²Institute for Basic Science, Daegu, Korea, Republic of,3DGIST, Daegu, Korea, Republic of

Track: Bioinformatics, Computational and Systems Biology

Computational Modeling and Systems Approaches:

Systems Approaches to Therapy and Therapeutics Posters

P-Th-118

Early Changes in Innate Cytokine Networks Predict Response to Antiretroviral Therapy in HIV

K. ARNOLD¹, L. GAMA², G. SZETO¹, D. IRVINE¹, P. HUNT³, D. LAUFFENBURGER¹, AND E. KALLAS4

¹Massachusetts Institute of Technology, Cambridge, MA, ²The Johns Hopkins University, Baltimore, MD, ³University of California, San Francisco, San Francisco, CA, ⁴University of São Paulo, São Paulo, Brazil

Conserved RTK-Intrinsic Signaling Consequences Result in Distinct Bypass Resistance Capacity

S. MANOLE¹ AND A. MEYER¹

¹Massachusetts Institute of Technology, Cambridge, MA

P-Th-120

Rat and Human Metabolic Network Models for Comparative Analyses in Toxicology

E. BLAIS¹, K. RAWLS¹, I. LI¹, AND J. PAPIN¹ ¹University of Virginia, Charlottesville, VA

A Systems View of Hysteresis in the Development of Multidrug Resistance of Pseudomonas aeruginosa

PYEN1 AND J PAPIN1

¹University of Virginia, Charlottesville, VA

P = Poster Session **OP** = Oral Presentation = Reviewer Choice Award

P-Th-122

Multi-Scale Systems Pharmacology Analysis Of Combination Therapy And Drug Desistance In Tuberculosis

E. PIENAAR¹, V. DARTOIS², D. KIRSCHNER³, AND J. LINDERMAN¹ ¹University of Michigan, Ann Arbor, MI, ²Public Health Research Institute and New Jersey Medical School, Newark, NJ, 3University of Michigan Medical School, Ann Arbor, MI

P-Th-123

Systems Serology To Dissect The Polyclonal Nature Of Vaccine-Induced Humoral Immunity

M. KUMAR¹, A. CHUNG², K. ARNOLD¹, L. DUNPHY¹, G. ALTER³, AND D. LAUFFENBURGER¹¹Massachusetts Institute of Technology, Cambridge, MA, ²University of Melbourne, Melbourne, Australia, ³Ragon Institute, Cambridge, MA

P-Th-124

Experimental and Computational Method Characterizes Non-genetic Drug Resistance Mechanisms

A. CLAAS¹, J. DOWNEY¹, AND D. LAUFFENBURGER¹ ¹Massachusetts Institute of Technology, Cambridge, MA

P-Th-125

Mathematical Model Reveals Increased Protease Following Inhibition Due to Cannibalistic Regulation

W. SHOCKEY1, C. WILDER1, M. FERRALL1, AND M. PLATT1 Georgia Institute of Technology and Emory University, Atlanta, GA

Targeting Mitochondrial Biogenesis to Overcome Intrinsic and Acquired Drug Resistance to MAPK Pathway Inhibitors

G. ZHANG¹, L. WU¹,², D. T. FREDERICK³, Z. WEI⁴, Y. C. CHAE¹, X. XU⁵, C. KREPLER¹, G. MILLS⁶, D. C. ALTIERI¹, K. T. FLAHERTY³, AND M. HERLYN¹ ¹The Wistar Institute, Philadelphia, PA, ²University of Pennsylvania, Philadelphia, PA,3Massachusetts General Hospital, Boston, MA,4New Jersey Institute of Technology, Newark, NJ, ⁵The Hospital of the University of Pennsylvania, Philadelphia, PA, ⁶The University of Texas MD Anderson Cancer Center, Houston, TX

The Effect Of Halogenation Of Erythrosine B on Amyloid-Beta 40 Oligomer Aggregation and Neurotoxicity In Alzheimer's Disease Using Molecular Modeling

J. KIM¹, W. LEE¹, S. KANG¹, J. E. SHIN¹, H. JIN¹, I. KWON², AND S. S. JANG¹ ¹Georgia Institute of Technology, Atlanta, GA, ²Gwangju Institute of Science and Technology, Gwangju, Korea, Republic of

Track: Bioinformatics, Computational and Systems Biology

Computational Modeling and Systems **Approaches:**

Theory and Practice of Synthetic Biology Posters

Computer Capture of Systems of Engineered DNA Strands with Application to DNA Sequence Design

R. ATKINSON1 AND B. LUTZ

¹University of Washington, Seattle, WA

P-Th-129

Real-Time Light-Driven Temporal Control Of Gene Expression And Protein Concentration In S. cerevisiae

J. MELENDEZ¹, M. PATEL², B. OAKES³, P. XU⁴, AND M. MCCLEAN⁴,⁵ Washington University, St. Louis, MO, ²University of North Carolina, Chapel Hill, Chapel Hill, NC, ³University of California, Berkeley, Berkeley, CA, ⁴Princeton University, Princeton, NJ,5University of Wisconsin, Madison, Madison, WI

P-Th-130

Dynamic Regulation Of Toxic Synthetic Bacteria Prevents Learning In The Model Nematode Caenorhabditis elegans

O. Bracho¹, C. Manchery¹, E. Haskell¹, C. Blanar¹, and R. Smith¹ ¹Nova Southeastern University, Fort Lauderdale, FL

POSTER VIEWING WITH AUTHORS & REFRESHMENT BREAK | 9:30AM - 10:30AM, 3:30PM - 4:30PM

P-Th-131

Spatial Disturbance As A Driver Of Extinction In Synthetic Cooperative

C. WILSON¹, W. DRISCOLL², O. ELDAKAR¹, J. LOPEZ¹, AND R. SMITH¹ Nova Southeastern University, Fort Lauderdale, FL, ²University of Minnesota, Minneapolis,

Track: Translational Biomedical Engineering Devices and Sensors:

Biomedical Device Design in Translational Research Posters

P-Th-132

Design And Proof Of Concept For A Single Cell Electromagnetic Loading

A. VALDEVIT¹, E. NOONAN¹, S. FERRELL¹, AND P. LEOPOLD¹ ¹Stevens Institute of Technology, Hoboken, NJ

P-Th-133

A Simple Approach for Removal of Irreparably Damaged Cells from Stored Blood

H. XIA1, B. STRACHAN1, N. PIETY1, S. GIFFORD1, AND S. SHEVKOPLYAS1 ¹University of Houston, Houston, TX

P-Th-134

Pore Size Impacts Cell-Cell Communication and Scar Contraction in 3D-Printed Polyurethane Scaffolds

T. D. RAMCHAL¹, E. R. LORDEN², Z. WANG³, L. BASHIROV¹, M. M. IBRAHIM¹, E. HAMMETT², B. KLITZMAN², J. J. YOO³, H. LEVINSON¹, S. J. LEE³, AND K. W. LEONG², ⁴ ¹Duke University Medical Center, Durham, NC, ²Duke University, Durham, NC, ³Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, 4Columbia University, New York, NY

A Complete Blood Cell Count Biochip from a Drop of Blood

U. HASSAN¹, B. REDDY¹, C. YANG², G. DAMHORST¹, AND R. BASHIR¹ ¹University of Illinois at Urbana Champaign, Urbana, IL, ²University High School Urbana,

P-Th-136

Quantum Dot Based DNA Nanosensor For The Detection Of Mycobacterium Tuberculosis

M. JEPSEN¹, C. HARMSEN¹, O. FRANCH¹, M. HEDE², B. R. KNUDSEN¹, AND Y-P. HO¹ ¹Aarhus University, Aarhus, Denmark, ²zymonostics, Aarhus C, Denmark

P-Th-137

A Phase Plane Metric For Intracranial Pressure After Traumatic Brain Injury

M. QADRI¹, N. H. KIM¹, S. DANISH¹, AND W. CRAELIUS¹ ¹Rutgers, The State University of New Jersey, Piscataway, NJ

The Foreign Body Immune Response to Implanted Materials is Dependent on Size and Shape in Rodents and Non-Human Primates

O. VEISEH1, R. LANGER1, AND D. ANDERSON1 ¹Massachusetts Institute of Technology, Cambridge, MA

P-Th-139

The Sensitivity of Microfluidic Flow Assays to von Willebrand Factor Levels in Type I von Willebrand Disease Patients Compared to Clinical Assays

M. LEHMANN¹, C. NG², J. DI PAOLA², AND K. NEEVES¹, ¹Colorado School of Mines, Golden, CO, ²University of Colorado Denver, Aurora, CO

Jacquard Weaving Of Scaled Up, Tissue-Replicating Biomaterials And **Implants**

J. NG¹, R. WHAN¹, AND M. KNOTHE TATE¹ ¹University of New South Wales, Australia, Sydney, Australia

The Application of BioHeat Perfusion Sensors To Quantify Pressure Ischemia Of Explanted Organs

T. O'BRIEN¹, A. ROGHANIZAD¹, J. ROBERTSON¹, AND T. DILLER¹ ¹Virginia Tech, Blacksburg, VA

P-Th-142

Towards a Point-of-Care Blood Sensor to Quantify Multiple Traumatic Brain Injury Biomarkers

B. HASELWOOD¹, A. LAM¹, AND J. LA BELLE¹,² Arizona State University, Tempe, AZ, ²Mayo Clinic Arizona, Scottsdale, AZ

Novel, Remote Low Temperature Plasma Hybrid Device For Sterilization And Therapeutic Biomedical Uses

K. A. MORRISON¹, O. ASANBE¹, E. KIERKELS¹, Y. TOYODA¹, W. LANDFORD¹, X. DONG¹, C. GOLKOWSKI2, AND J. A. SPECTOR1,2

¹Weill Cornell Medical College, New York, NY, ²Cornell University, Ithaca, NY

P-Th-144

Posterior Vertebral Fixation: Screw-to-Screw Cross-Connection Concept

E. MATTUCCI¹, J. JENDRUS¹, M. ANGELUCCI¹, J. NEIDERT¹, J. MAUGER¹, AND J. ISAACS¹ ¹Widener University, Chester, PA

P-Th-145

Development of a Plantar Pressure Postural Analysis & Biofeedback Suite for WMSD Corrective Therapy

N. QUINTERO¹, J. HELWIG¹, K. SVERRISDOTTIR¹, J. RUIZ¹, J. MERCIEZ¹, S. GROM¹, L. MARTS III1, N. SONNENFELD1, A. DAS1, AND E. DIVO1,2

¹Embry-Riddle Aeronautical University, Daytona Beach, FL, ²University of Central Florida, Orlando, FL

Th

Track: Translational Biomedical Engineering Devices and Sensors:

Biomedical Products and Devices Posters

P-Th-146

Plasma Treatment of Dentin Surfaces for Improving Adhesive/Dentin Interface Bonding

O. YU1

University of Missouri, Columbia, MO

Design of Microfabricated Sensor to Measure Lumbar Spinal Fusion

D. MUNRO¹, E. TSAI¹, A. LINGLEY², AND M. KHBEIS²

University of Portland, Portland, OR, ²University of Washington, Seattle, WA

P-Th-148

Use of Argon as a Tissue Fixation Preservative and RNA Stabilizing Agent

S. JOSHI1, J-Y. CHUNG2, V. RASANAYAGAM1, M. SUNDAR1, AND S. HEWITT2 ¹Delaware Research and Technology Center, American Air Liquide Inc, Newark, DE, Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD

P-Th-149

Dissolution of Platinum Electrodes During Electrical Stimulation of Neural Tissue

D. KUMSA¹, P. TAKMAKOV ², AND D. BARDOT³

¹US Food and Drug Administration and Medical Device Innovation Consortium, Silver Spring, MD, ²US Food and Drug Administration, Silver Spring, MD, ³Medical Device Innovation Consortium, St. Louis Park, MN

P-Th-150

Personalized 3D Printed Bio-absorbable Drug-eluting Stent for the Treatment of Vascular Disease

S. MISRA¹ AND D. PAN¹

university of Illinois at Urbana-Champaign, Urbana, IL

Inductance Sensing To Detect Tissue Thickness Between Conducting Surfaces For Application In Surgical Instruments

A. ARUN¹, B. GASTON¹, S. CHEN², D. KWIAT¹, J. IMAMURA-CHING¹, R. FETCHER¹, H. JIANG², M. HARRISON¹, AND S. ROY¹

¹University of California San Francisco, San Francisco, CA, ²San Francisco State University, San Francisco, CA